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4.2.3 Example

We continue the example of polynomial regression to illustrate how the generali-
sation performance depends on the model complexity and the size of the training
data.

Generalisation Performance and Model Complexity

Figure 4.5(a) shows the training and prediction loss of the fitted polynomial
regression model hy as a function of the degree of the polynomial (model com-
plexity) A. We can see that the prediction loss and training loss are generally not
the same, i.e. )

T(hn) £ J3. (4.29)
In the figure, the prediction loss is smallest for A = 4, and while a five-degree
polynomial has the smallest training loss, it has the largest prediction loss. Such
a mismatch between training and prediction performance is due to overfitting.
The estimated model k) is highly tuned to the specific training data D" and
does not reflect the general relationship between the predictor and the target
variable. In contrast, we see that increasing the complexity of the degree-zero
or degree-one polynomial will decrease the prediction loss. That is, these models
are underfitting the training data.

While Figure 4.5(a) depicts the training and prediction loss for a particular
training set, Figure 4.5(b) shows their distribution over different training data
sets. We can see that the variability of the prediction loss increases with the
flexibility of the model. This is due to overfitting because the estimated model
then depends strongly on the particularities of each training set that are bound
to vary when the training data change. Underfitting, in contrast, leads to a small
variability of the prediction loss because the fitted model captures comparably
few properties of the training data.

The red solid line in Figure 4.5(b) shows the expected (average) prediction loss
J as a function of \. While a model of degree A\ = 4 performed best for the partic-
ular training data used in (a), models of degree A = 3 yield the best performance
on average. We see that there is here a difference between the generalisation
performance of a specific fitted model and the generalisation performance of a
model-family across different training sets, which reflects the general difference
between 7 (hy) and J(Ax) discussed in Section 4.2.1.

Generalisation Performance and the Size of the Training Data

The results so far were obtained for training sets of size n = 20. We saw that
flexible models tended to overfit the training data, so that there was stark differ-
ence between training and prediction performance. Here, we illustrate how the
size of the training data influences the generalisation performance.

Figure 4.6 shows the expected training and prediction loss as a function of
the size n of the training data for polynomial models of different degree. We can
generally see that the training and prediction loss approach each other as the
sample size increases. Note that they may generally not reach the same limit
as m increases because the training and prediction loss functions L and L, for
example, may not be the same.
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Figure 4.5: Training versus prediction performance of different prediction models.

Figure 4.6(a) shows that increasing the model complexity decreases the pre-
diction loss for the models of degree zero and one. Moreover, their prediction
loss does not decrease below a certain level even if the size of the training data
increases. Both phenomena are a sign of underfitting.

Figure 4.6(b) shows the average training and prediction loss for the polynomial
model of degree five. The large difference between training and prediction loss for
small sample sizes is due to overfitting. As the size of the training data increases,
however, the gap between the two losses becomes smaller, which means that the
amount of overfitting decreases.

Comparing Figure 4.6(a) and (b) shows us further that even for large samples,
on average, the model of degree five does here not achieve a smaller prediction loss
than the model of degree three. Hence, for this problem, there is no advantage
in using a more complex model than the model of degree three. In general, we
can use model selection to choose among candidate models, or regularisation to
avoid overfitting flexible models on small training data. Both model selection
and choosing the right amount of regularisation correspond to hyperparameter
selection.

4.3 Estimating the Generalisation Performance

We typically need to estimate the generalisation performance twice: Once for
hyperparameter selection, and once for final performance evaluation. We first
discuss two methods for estimating the generalisation performance and then apply
them to the two aforementioned tasks.

4.3.1 Methods for Estimating the Generalisation Performance

The hold-out and the cross-validation approach to estimate the generalisation
performance are presented.
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Figure 4.6: Average training versus average prediction performance for different
sizes of the training data.

Hold-out Approach

Assume that the prediction function h has been obtained using training data
Dtrain, ie.

h = A(D"n), (4.30)

If another data set D is available with 7 samples (&;, ;) ~ p(z,y) that are
statistically independent from the samples in D" we can use D to estimate
the prediction loss J(h) via a sample average

T (D) = = > L&), §i)- (4.31)

Depending on the context, D is called a test or a validation set.

We are typically given the union of the two data sets D" and D, and it is
up to us how to split them into the two sets. Common split ratios are n/n =
60/40, 70/30, or 80/20. If the number of (hyper) parameters is large, it is better
to increase the ratio so that more data are available for training.

While the splitting is often done randomly, particularly in classification, it is
important that the different values of the target variable (e.g. the class labels)
represented in a balanced way in both D™ and D. Stratification methods can
be used so that e.g. the classes are present in the same proportions in both Dt2in
and D.

The value of the estimated prediction loss in (4.31) may vary strongly for
different hold-out data sets D unless 7 is large. This is often seen as a drawback
of the hold-out approach. Figure 4.7 illustrates the variability that can be intro-
duced by randomly splitting a data set into a training set D" and test set D.
Cross-validation is often used to avoid such issues.

Cross-validation

Cross-validation consists in randomly dividing the data that are available for
training into K (roughly) equally-sized subset (folds) Dy, ..., Dk without overlap.
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